数学的基本概念
实数
实数,是有理数和无理数的总称。数学上,实数定义为与数轴上点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。实数集通常用黑正体字母 R 表示。
有理数
有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。有理数集可以用大写黑正体符号Q代表。
无理数
无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。
实数
实数,是有理数和无理数的总称。数学上,实数定义为与数轴上点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。实数集通常用黑正体字母 R 表示。
有理数
有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。有理数集可以用大写黑正体符号Q代表。
无理数
无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。